教育心理学
网站首页 > 教育心理学 > 文章列表

如何学好小升初数学?信诺教育提醒学生这些公式要牢记! 信诺教育 湖北信诺教育 一对一 艺考集训班 暑期预科 中高考签约 湖北中小学家教 个性化辅导班 武汉小升初

发布时间:2019-06-10


  根据耶克斯-多德森定律,只有适度的焦虑水平才会产生良好的学习效果,水平过低和过高都会影响成绩。

      12.告诉你比鬼片还恐怖的事:你们的假期已经过掉一半啦。    13.作业加载中:1%...2%...3%...4%...5%...5%...5%...加载失败!请教育局重新放假!    14.上课时只知道星期几不知道日期,放假时只知道日期不知道星期几。    15.所谓的放假,不过是是换了个人少的地方做作业罢了。    16.这年头,手里没几十张卷子、七八本作业,都不好意思跟人说学校放假。

如何学好小升初数学?信诺教育提醒学生这些公式要牢记!  信诺教育 湖北信诺教育 一对一 艺考集训班 暑期预科 中高考签约 湖北中小学家教 个性化辅导班 武汉小升初

如何学好小升初数学?信诺教育提醒学生这些公式要牢记!数学在小升初考试中分数占比非常大,同时也是很多孩子觉得比较难学的科目。

小升初组数学老师为孩子们准备了小升初数学必备公式,把下面这些数学公式牢牢记住,小学的考试中的基础题部分肯定不会出错,今天就为大家带来第一篇。 1、和差倍问题2、年龄问题的三个基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。 关键问题:根据题目中的条件确定并求出单一量;4、植树问题5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。 6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。 7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。 关键问题:确定循环周期。 闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。 ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10、抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。 抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[]=4;[]=0;[]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

下一篇:没有了

网站地图

地址:云南省昆明市高新区海源北路

Copyright? 2012-2015 版权所有:小学教育-教育宝www.35918r.com